Most users of Statistics are familiar with the F-test for Variances. But there is also a Chi-Square Test for the Variance. What's the difference? The F-Test compares the Variances from 2 different Populations or Processes. It basically divides one Variance by the other and uses the appropriate F Distribution to determine whether there is a Statistically Significant difference.
If you're familiar with t-tests, the F-test is analogous to the 2-Sample t-test. The F-test is a Parametric test. That is, it requires that the data from both the 2 Samples each be roughly Normal. Chi-Square (like z, t, and F) is a Test Statistic. That is, it has an associated family of Probability Distributions. The Chi-Square Test for the Variance compares the Variance from a Single Population or Process to a Variance that we specify. That could be a target value, a historical value, or anything else. Since there is only 1 Sample of data from the single Population or Process, the Chi-Square test is analogous to the 1-Sample t-test. The Chi-Square test is Nonparametric. It has no restrictions on the data.
1 Comment
Nana Kwame Owusu-Afriyie
10/24/2016 11:43:17 am
Succinct
Reply
## Leave a Reply. |
## AuthorAndrew A. (Andy) Jawlik is the author of the book, Statistics from A to Z -- Confusing Concepts Clarified, published by Wiley. ## Archives
October 2017
## Categories |